School "Tito Maccio Plauto" – Cesena (IT)

1. INTRODUCTION

PROJECT SUMMARY

- Major renovation of a primary school, built in the 60s'
- 440 students, 50 employees
- 20 classes (about 22 students)
- Area: 6.420 m²; Volume: 24.554 m³
- No previous energy renovation
- Intervention on:
 - building envelope
 - heating and ventilation system
 - RES

SPECIAL FEATURES

- Limited additional costs
- External insulation with re-design of architectural aesthetic features.
- Users' participation

ARCHITECT

- Municipality of Cesena - Department of Public Works Technical Office

OWNER

- Municipality of Cesena

Brochure authors: Ezilda Costanzo, Michele Zinzi Contact: ezilda.costanzo@enea.it

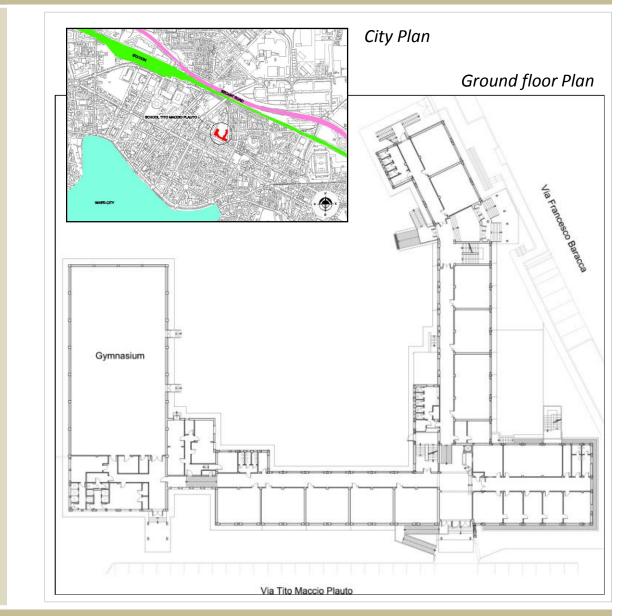
IEA – SHC Task 47 Renovation of Non-Residential Buildings towards Sustainable Standards

2. CONTEXT AND BACKGROUND

BACKGROUND

- The school is located in a modern neighborhood in a medium town
- Occupational profile: the school is mostly occupied from 8.00 to 13.00; Gym and music hall, and some few classrooms are occupied in the afternoon and in the evening, with variable schedules (no summer use)

Critical points


 Installation of mechanical ventilation in most of the classrooms interfered with existing control devices and required expensive works for architectural integration

OBJECTIVES OF THE RENOVATION

- Reduction of heating and global energy consumption
- Improve indoor comfort

SUMMARY OF THE RENOVATION

- Relevant heating and global energy consumption reduction
- Total envelop refurbishment and user's participation
- Low costs.

3. DECISION MAKING PROCESSES

SELECTION

- The building was chosen, according to the municipal plan of refurbishment, because of:
- low energy and indoor comfort performance
- need for architectural maintenance.

FUNDING

- Municipal funding program for energy refurbishment of the school building stock
- European funds are used (7th FWP, about 603 k€, funded at 75%)

ACTORS INVOLVED

- Municipality of Cesena department for public works and Projects Office
- Municipal general director staff
- In-house company: "Energie per la citta spa"
- Partnership of EU 7th FP Project:" School of the Future" (experts for renovation)
- Building users, ENEA (Italian EE Agency)

DESIGN PHASES

- Building inspection and survey, mapping pathologies and defects
- Design simulations by a software based on Italian UNI TS 11300 calculation standard for energy certification)
- Evaluation of renovation solutions

Open call for tenders: beginning in 2012

A standard classroom

4. BUILDING ENVELOPE

Roof cons	truction (Gym) U-va	alue: 0,28 W/m².K
(new) polyst	yrene insulation	100 mm
Mortar conc	rete and bricks	<u>300mm</u>
Total	400 mm	
Wall const	ruction (school) U-	value: 0,30
Brick and int	ernal plastering	300 mm
(new) Glass	wool panels	<u>120mm</u>
Total	420 mm	
Slab/ceilin	g (attic floor) U-value	e: 0,185 W/m².K
Mortar conc	rete and bricks	210 mm
(new) glass	wool rolls insulation	200 mm
Total	410 mm	
Floor/slab (ground basement)		U-value: 0,31
Mortar concrete and bricks		210 mm
(new) polystyrene insulation		100 mm
Total	310 mm	

Windows: U-value: 1,14 W/m2.K (new) PVC with argon frames, double glazing

Thermal bridge avoidance:

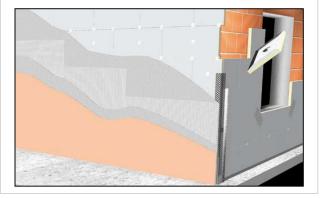
Continuity of the insulation by window sill, corners connections. A facade wall strip close to the walkways will not be insulated

Summary of U-values	Before	After
Slab/ceiling (attic floor)	2,31	0,185 (-92%)
Walls (school)	1,85	0,30 (- 84%)
Floor/slab (basement)	1,33	0,31 (-77%)
Windows	5,71	1,14 (-80%)
Gym roof	2,32	0,28 (-88%)
Gym Walls	1,85	0,37 (-80%)

Before:

Wall: Fair faced bricks walls

Windows: single glazed windows with iron frame



Roof and slab/ceiling (unheated attic floor) : concrete and brick masonry

Retrofit:

Insulation system

5. BUILDING SERVICES SYSTEM

OVERALL DESIGN STRATEGY:

- Complete envelope refurbishment
- Heating system renovation
- RES covering electricity needs
- BEMS

HEATING SYSTEM

- Before: Natural gas boilers (firebox power 385+385 kW)

- After: Condensing and modulating boilers, radiators with thermostats (classrooms) and heat convectors (gym hall)

COOLING SYSTEM

- Before and after: no cooling system

VENTILATION

-Before: natural ventilation only -After: mechanical ventilation with recovery

-HOT WATER PRODUCTION

- -Before: Natural gas boilers
- Condensing Boilers

RENEWABLE ENERGY SYSTEMS

- After: PV system on the Gym roof covering annual electric energy need

Before

The existing natural gas boilers (installed in 1977)

- radiators in the classrooms

- heat-convectors in the Gym Hall

After Retrofit:

- Condensing and modulating boilers
- Thermostatic valves installed on radiators
- New monitoring system for managing the heating system
- BEMS and Monitoring system connected to the Municipality energy centralized one

BENEFITS:

- Increased average seasonal efficiency ratio
- Occupancy control makes the heating system work according to the external temperature and the actual use of the classrooms

6. ENERGY PERFORMANCES

Global EP index:

- Before: 154,3 (kWh/m²)
- -After: 32,3 (kWh/m2) (Practice in Italy: 79)

Heating EP index

- Before: 137 (kWh/m2)
- After: 32,3 (kWh/m2)

Renewable Energy Use

- 64,5 kW PV system on the School roof covering 100% electric energy need (from all electric devices, lighting, computers, *etc,*)

Thermal And Electric Consumption And Costs (Before And After)

- See tables on the side

Primary energy consumption

(Primary energy consumption is defined as delivered energy multiplied with primary energy factors)

Consumptions & costs					
Heating energy (year 2009)					
Before: Year	Annual consumption (kWh/m2 anno)				
2010	123,12				
Average value (last 5 years)	117,45				
Natural gas consumption (year 2009)					
72.418 m ³					
Users	Electricity consumption (year 2010)				
Lighting, Lift	68.328 kWh				
Pumps and heaters, Offices	10,64 kWh/m2				
and Labs	11.890 EURO				
Degree Days (DD)					
1.933	183				
	Hours of heating				
	Classrooms				
Offices Area	1.304 Gymnasium Area				
Unites Alea	GVIIIIdSIUIII Ared				

After retrofit:

Global EP index reduction:

79%

Heating EP index reduction:

76%

Electric energy covered by Renewable Energy Systems 100%

CLARIFICATION: the energy calculations and given energy numbers will be according to the national standards which might vary between countries., i.e. numbers are not always comparable

7. ENVIRONMENTAL PERFORMANCE

No particular attention and analysis to the following environmental issues:

- water management
- waste management
- ecological materials

No use of:

- labels
- life cycle analysis
- Life cycle costs

Benefits:

- INDOOR CLIMATE
 - The original functioning temperature (65-75°C) was reduced.
 - Efficient windows improved the winter thermal comfort
 - Installed sun-shading improved the thermal comfort during the intermediate season

INDOOR AIR QUALITY

Mechanical ventilation improved the indoor air quality

- •.QUALITY OF LIFE
- Reduction of indoor noise due double glazing
- General improvement from first feedback questionnaires completed by the occupants.

7. MORE INFORMATION

RENOVATION COSTS

Low renovation costs (120€/m2), slightly increased compared to the initial planning, essentially due to unpredicted conditions during the executive phase.

• FINANCING & CONTRACTING MODEL

- Public financing (traditional)
- EU 7 FP contribution (603 k€, funded at 75%), Municipality will cover the residual costt
- No public tender: Contractors were chosen by private auction through a simple negotiated procedure, according to the Italian "public contracts code" 163/2006, for benefit of time saving.

• OTHER ASPECTS

- Particular challenges resided in guaranteeing continuous functionality to the school for lessons, facilities and office activities (eg. scaffoldings on the classrooms facades, fire escape measures)
- The school coordinator, assistants, pupils, sport societies were involved in the renovation. They completed feedback questionnaires and will be involved in POE (Post Occupancy Evaluation).
- The participation in the EU project <u>http://www.school-of-the-future.eu/</u> encouraged networking, periodical evaluation and reporting.

